a0 4001398

Reproduced
by the

ARMED SERVICES TECHNICAL INFORMATION AGENCY
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA

®

UNCLASSIFIED




NOTICE: When govermment or other drewings, speci-
fications or other data are used for any purpose
other than in connection vith a definitely related
govermment procurement operation, the U. 8.
Government thereby incurs no responsibility, nor any
obligation wvhatsoever; and the fact that the Govem-
ment may have formlated, furnisghed, or in any way
supplied the said drawvings, specifications, or other
data 1s not to be regarded by implication or other-
vise as in any manmner licensing the holder or any
other person or corporation, or conveying any rights
or permission to mamufacture, use or sell any
patented invention that may in any vay be related
thereto.




APPLIED MATHEMATICS AND STATISTICS LABORATORIES

STANFORD UNIVERSITY
CALIFORNIA

GENERALIZED LEAST SQUARES ESTIMATORS FOR
RANDOMIZED FRACTIONAL REPLICATION DESIGNS

BY
S. ZACKS

TECHNICAL REPORT NO. 86
March 15, 1963

400 398

PREPARED UNDER CONTRACT Nonr-225(52)
(NR-342-022)
FOR
OFFICE OF NAVAL RESEARCH




B2

o O 40 e 3 0 Ak <+ % et L MR o el Ui <N S N o e 6 e oemy

GENERALIZED LEAST SQUARES ESTIMATORS FOR
RANDOMIZED FRACTIONAL REPLICATION DESIGNS
by

S. Zacks

TECHNICAL REPORT NO. 86
March 15, 1963

PREPARED UNDER CONTRACT Nonr-225(52)

(NR-342-022) AST
FOR P »‘Jmp“ls‘r\,'rj:
OFFICE OF NAVAL RESEARCH : APR 10 1963
I i
U v sl
TISIA 8

Reproduction in Whole or in Part is Permitted for
any Purpose of the United States Government

APPLIED MATHEMATICS AND STATISTICS LABORATORIES
STANFORD UNIVERSITY
STANTORD, CALIFORNIA



Ry

Generalized Least Squares Estimators
for Randomized Fractional Replication Designs

by
S. Zacks

1. Introduction

Fractional replication designs have become of great importance,
especially for industrial experimentation. A missile whose operation
is affected simultaneously by dozens of interacting factors would pro-
duce a full factorial experiment of impractical size. Indeed, if there
are more than 20 factors which may affect the operation of a missile,
and if we like to attain complete information on all the main effects
and interactions of the controllable factors we would run the experi-
ments over more than 220 = 1,048,576 treatment combinations. Fractional
replication designs are planned to attain information about some of
the main effects and Interactions by a relatively small number of trials.
If the operation of a missle can be controlled with some information on
the main effects and some low order linear interaticns, it might be
sufficient to run only 32 or 64 trials at a time. These however, should
be chosen from those possible in some optimal manner.

The problem of choosing a l/2m-S fractional replication and an
appropriate estimator of the parameters characterizing the factorial
model (main effects and interactions) has been studied by A. P. Dempster
(1960, 1961), K. Takeuchi (1961), S. Ehrenfeld and S. Zacks (1961,

1962) , S. Zacks (1962), B. V. Shah and O. Kempthorne (192a,b). In
all these studlies the type of estimators considered is that which yields,

under a randomized procedure with equal probabilities of choice, unbiased



estimates of a specified linear functional of a subvector of parameters,
which lies in the range of the design matrix (the matrix of the corres-
ponding normal equations).

In the present study statistical properties of the generalized
least squares estimators, under randomized fractional replication de-
slgns, are studied. The term generalized least-squares estimators (de-
noted henceforth by g.l.s.e.) is used since the matrices of the nor-
mal equations corresponding to these designs are singular. The fac-
torial models corresponding to the type of fractional replication de-
signs studied in the present paper 1s presented in section 2. For this
sake we start from the factorial model for a full factorial system.

Then we present the required algebra, and the method of constructing
the orthogonal fractional replications. The linear spaces of all g.l.s.e.
associated with the various orthogonal fractional replication designs
are characterized in terms of the linear coefficients of the corres-
ponding factorial models. Some statistical properties of the g.l.s.e.
under procedures of choosing a fractional replication at random, are
then studied. First we prove that there is no g.l.s.e. which yields
unbiased estimates of the entire vector of 2" parameters. However,
there are g.l.s.e.s which estimate unbiasedly subvectors of parameters.
The trace of the mean-square-error matrix corresponding to a g.l.s.e.
applied under certain randomization procedure is used as a loss
function for the decision problem of choosing a g.l.s.e. and a ran-
domization procedure. It is shown that when the parameters of the
factorial system may assume arbitrary values, the randomization pro-

cedure which assigns equal probabllities to various fractional
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replications (denoted by R. P.*) is admissible. Bayes g.l.s.e., relative
to a-priori information available on the parameters, are then studied.
This leads to a minimax theorem, which specifies a minimax and admis-
sible g.l.s.e. under R.P.*,

The relationship between the generalized inverse of the matrix of
normal equations and g.l.s.e. as given by A. Ben-TIsrael and J. Wersen
(1962), and by C. R. Rao (1962) is studied. It is shown that these
are particular cases in the general class of g.l.s.e. studied presently.

Finally, it should be remarked that although the present paper
deals with factorial system of order 2™ all the important results

hold in more general factorial systems of order pm (p>2),



2. The statistical model for fractional realication desiﬁaa.
S EEEEEERENEE RN EENT SR

2.a. The statistical model for a full factorial experiment

of order 2",

A full factorial experiment of order M g a set of 2" treat-

ment combinations, consisting of m factors Xo,..., xm-l each at

two levels. Such a system can be characterized by " parameters

Qb""’ a o ; which are the coefficients of the multilinear re-
2 -1
gression function:

A by
- o, 1 m-1
(2.1) E(Y(X,...,X )] = PN %o, ) % X e X 77
(M, eeenh ) o m-1
o m-1
m-1 3
where XJ = o,l (J=O, -on,m"l); u(xo, ...’Xm-l) = XJ 2 H
J=0
and Y(Xo,...,xm_l) is a random variable representing the "yield" of

the experiment at treatment combination (xo""’xm-l)' Denote by

xJ,O and xJ,l (3=0,...,m-1), xJ,O< xj,l’ the two specified levels
of factor XJ. By changing variables according to the transformation
1
X - = (X + X, )
k 2 0 1
(22) 2y, = Lo ( p !)1' (k=0,1;3=0, ... ,m-1)
= (X - X
2 7yl J,0

the regression function (2.1) is reduced to the form:

(2.3) E(Y(Zo,...,Z

_ o, 1 m-1
1)) = 2 B 2 Zy e o

where z\1 = -1, +1 (J=0,...,m-1); and u.——.u(xo,...,xm_l) .



Writing Z, = (-1) J with 1,=0,1 forall §=0,...,m1, the

regression function (2.3) can be represented in the form:

m-1
2 ,ng b1ty
(2.4) E(Y(1 50008 )] = ugo B,(-1)
m-1 3
Furthermore, denote by x_ = (1 ,...,i .), v= 3 1, 2°, the
v 1 3=0 J

2m treatment combinations of the factorial system under considera-

tion; and let

m-1
A (-1
(2" JZO sty m
(2.5) ey < (-1) , forall v,u=20,..., 2 -1
then (2.4) is reduced to the form:
2m-1 (2m) " m
(2.5) E(Y(x ) = ;g By Svu , forall v =20,...,2 -1

Let Y' = (Y(Xo),...,Y(x m )) be the vector of observations at all
2 -1
the 2m treatment combinations; and let B'

(B yeussB ) be the
° 2"
vector of parameters of (2.5). Thus, if

m m
(C(E )) = ”c‘(ri )” , (vyu

fl

m
0,4.4,2 -1),

denotes the matrix of the coefficients of the PB's 1in (2.5), then

the statistical model for a full factorial system can be written as:

m
(2.6) Y = (c(2 )) B+ e

V2 1@
vhere € 1is a random vector, with Ee€ =0 and Ec€e' = o 1
(I<n) denoting the identity matrix of order n).



2.b. The algebra of factorial experiments.
()

2.b.1. Properties of the matrices

m
The properties of the matrices (C(2 )) will be presented without

proofs. For details see S. Ehrenfeld and S. Zacks (1961).
m
The matrices (C(2 )) , m=1,2,..., of (2.6) can be obtained

recursively by the following relationship:

-1
en (@) - [i i] ® @), me1e...

where (C(O)) =1 (scalar), and wvhere A@®DB 18 the Kronecker's
direct multiplication of the matrix A Dby the matrix B from the
left, defined as follows: If A 4is an n x m matrix ”aiJ”’ and

B isa k x 1 matrix Ilbrsn, then A@®B 1is the nk x ml matrix:

(&, B 1. ., ! ]
a9 E i Bm B
---1I--- -:----
A®B : :. . ; :
. ] . L[]
--;-}—---:---B-
L&nl ; . . : anm

From the associative property of the Kronecker's direct multiplica-

m
tion it follows that every matrix (C(2 )) can be factorized into

28y 28 (1 < s <m) submatrices of order 2% x 28, according to

the relationship:
(2™

(2.8) €@ - @) @ @)y, L<s<m

sued  pmwé g
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From this relationship it follows that the elements of ) are

-8 8
related to those of (C(2 )) and (C(2 )) according to:

(2.9) SCH M COIPRC

) ) i+je”,t 1’rt J’qt

‘ for all 1 = 0,...,2%-1; 3 =0,...,2"%.1; and where t = T, * ntS
(r, = 0,...,2%-1; q = 0,...,2"5.1) .,

m
Another useful relationship among the elements of (C(2 )) is

the following one: Let ul,u = 0,...,2m-1 be given by

2
u, = (xoi,xh,..., x(m_l)i) (1=1,2); )‘3,1 = 0,1 (J=0,...,m-1), and

define ul®u2 = (xé,...,x!;‘_l) vhere M\ = A + A, (mod. 2);

J hpt Je
then
m m m
(2.10) 0(2 ) = C(2 ). C(2 ) for every v=0,...,2%-1 .
v,ulC)u2 vou v,u,

(

m
The properties of (C(2)) are extended into (C 2 )) by the

recursion relationship (2.7), and are summarized as follows:

(2™ m
(1) C, o =1 forevery v=0,...,2°-1
1
m
(11) C(i ) . 1 for every u =0,...,2°-1
2°-1,u
(111) ¥ Cpq =0 forevery v = 0,...,20-2
u=0
{1v) X Chq =0 for everyu=1,...,2°-1 for every
v=

w=1,...,2%1 .



m
m, 2", 1if U, = u,
2- m m
(27) (2% _
(v) Z Con Cop =
v=0 1 2 0 1f u, u
) 1 2
and
2", if v, = v
2-1 m m 1 e
(vi) Z C\(/Zu) C\(rzu) =
u=0 1 2

(v) and (vi) can be expressed also in the form:

1 ' m
(C(em)) (C(em)) - (c(am))(c(eﬂl)) - 2m1(2 )

2.b.2. The group of parameters.

Every parameter ﬁu (u = O,..,.,2m~1) of the statistical model

(2.6) can be represented by an m-tuple Bu = (Xo, . "’)‘m-l) where

XJ =0,1 (J =0,.00,m-1).

The set of all 2" parameters constitutes a group, B with

respect to the operator (@, defined as follows:

mil J mil J

Let u, = A, 2° and u, = A 2° then B =8 @B

1 4% J 2 4 ko T,
m=1 3

if, and only if k = . A7 27 where ) =\, + \! (mod. 2) for
& 3T

all j =0,...,m=1.

The unit element of the group B is BO = (0,0,...,0) and the

-1
inverse of B = (N ,eea,h ) 18 Bus(a-xo,e-x

o 1 RS

1 m-l)

A set of n parameters Bu , ﬁu ,...,Bu 1s called dependent if there

1 2 n

(mod. 2).

veent semd g
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§ o

exist n constants 8 (k=1,...,n), not all of which are zero

(ak = 0,1), such that:

a a 2

1 2 n _
(2.11) [ﬁul] ® [tsual D ® [Bun] = B,
B, » if a=1
where (B ]a =
u B, » if a=0

If relationship (2.11) is valid only when all a =0 (k=1,...,n)

then Bu ,...,Bu are called independent. It is easy to check that
1 n
every set of n independent parameters (1 <n < m) generates a sub-

n
group of order 2 in B.

2.c. The construction of & /2" (a1 <s, m) fractional

replication.

Let (B, ,B. ,...,B } be any set of m-s independent

d d d
o 1 m-s8-1

parameters in B. The 2T <treatment combinations can be classified

into 2™® disjoint subsets Xv(v=0,...,2m's-1) of equal size, re-

lative to the specified m-s independent parameters, in the following

manner: Let PpB. =

2, (xo’dk, )‘1,d.k""’ Mo-1,

a defining parameter, and let X = (10,...,im l) be a treatment com-

bination, then x € Xv if, and only if,

m-1
i, A

m-g-1
k
v = z a 2",
k=0

(2.12) =8, (mod. 2), and where



In order to perform the classification of treatment combinations into

m

the blocks X (v =0,...,2"°%.1) we do not have to solve the linear

— s o

equations {2.12), but it suffices to compare the rows of the matrix

e

m
of coefficients (C(2 )) under the columns corresponding to the

special independent parameters [ﬁa ,...,ﬂa }. These two procedures
o m-s-1
are equivalent (see S. Ehrenfeld and S. Zacks (1961)). The m-s 1inde-

PR

pendent parameters, relative to which the classification takes place,

are called defining parameters. The answer to the question, which of

the parameters should be specified for the role of defining ones de-
pends on the objectives of the experiment. The choice of a set of de-
fining parameters will generally effect the bias of estimators and

their variances, and might have other effects on the properties of

] [ ] — o—

statistics and procedures (see O. Kempthorne (1952); S, Ehrenfeld and
S. Zacks (1961). }

The term fractional replication, in its broadest sense, relates

to any subset of treatment combination from a full factorial system.

K. Takeuchi (1961) considers designs of randomly combined fractional
replications. We shall consider in the present paper only fractional
replications which consist of one block of treatment combinations, Xv’
chosen from the set of "8 blocks constructed according to the pro-

cedure outlined above. These fractional replication: are called

orthogonal. A rardomized fractional replication procedure is one in

which a block XV is chosen with a probability vector &' = (go,.n,,gem-§l)

2.d. The statistical model for a l/E‘m's fractional replication.

Let {Qd ,.n.,Qd }] be a set of defining parameters;
m=5-1

m'S-l] the corresponding blocks of treatment combinations,

{Xv 3 V=0,...,2

10



and Y(X ) the vector of observations associated with the 2® treatment
combinations in Xv. The order of the components of Y(XV) is deter-
mined by the standard order of the corresponding x's in xv, e.g. 1if

= I =
X, = (x5 X35 Xg» Xg) then Y(x,) (¥(x,), Y(XB)’ Y(x5), ¥(xg)).

)
Let B(O) = (B, yeeosB ) be any specified vector of 2°
o) tl tes_l

parameters independent of the defining parameters (except for the "mean"

8 M-8
Bo); with tk < tk+l for all k =1,...,2 -1. Let [BE 3 u=0,...,2 =1}
be the subgroup of 2m'sparameters, generated by the m-s defining
parameters. Define by B(u) (u = l,...,2m’s-l) the vector of 2°

parameters ¢btained by multiplying each of the components of B(o) by
(u)

3 = % * % )¢

ﬁu, i.e., B (B°®Bu, Btl ® ﬁu,..., at25-1® Bu) . Then, the

statistical model for Y(Xv) can be written in the form:

L 28) ()
(2.13) Y(Xv) = ugg (:F'vu Y B + e = (PV)B* + €

where; as proven by S. Enrenfeld and S. Zacks (1961)

(2™%) (2™%)
(2.1k) (Pv) = (1, b, yeeey bv(em'§1) vO

s
is a 25x(2m-2s) matrix; (Pﬁg )) 1s a 2% x 2° matrix obtained

(2™ (2"
from (C ), by picking the elements of (C ) corresponding to
treatment combinations in Xv and the parameters in B(O) , and
m-s
arranging them in the standard order. The scalars biu ), by which

8 5
we multiply (Pig )) to obtain (Pii )) , are given by the formula:

m-sg=-1
S (13 (1,-L(a,))

(2.15) b (&) L (I



m-s-1 3 m-§;l 3 ( ) ﬁil ( )
where v = i, 2% u = i' 2¥ and L(d,) = mod. 2
ng 3y & & 3= & i ’

for every defining parameter Bd ; and where B¥% = coee
J * .
and € 1s a random vector of order 25, with Ee =0 and Eee' =0 I

2 _(2%)

8
It can be readily proved that, the rows of (P;ﬁe )) (v,u=0,...,2"21),

as well as its columns, are orthogonal, i.e.,
1
(2%)y (p(2°) (2%)yp(2°) s
) = t -
(2.16) (hys ) (B ) = (B MR ) =2

for all v,u=0,...,2m'§l; and that a similar property holds for the

(2M=8) ) (cm-8)
, whose elements are the coefficients b s
(ds,oou,d ) Vu

m-s-1

matrix (B

defined by (2.15), i.e.,

(2m-S) _ (2m-s)

)' (B ) =
(dgseensd o 3) (d seeerdy o 1)

2m-s

(2.17) (B I

for every choice of m-s defining parameters. For the sake of simpli-

B8 m

fying notation, let S =2° and M= 2"%, N = s.M= 2", Furthermore,

assume, without loss of generality, that the defining parameters are the

s
. 0
"main effects' [BS,B2S yesey N/2] and thet £ ) . (Bo,Bl,..., S-l)'

then, the blocks of treatment combinations are:

(2.18) i=0,..,,5-1} for all v =0,..., M-1

[xi+vS b

and the statistical model for Y(Xv) is glven by:

(2.19) ¥(x,) = ((2, cf,”l"),..., ci“&_l))® c®)1p+ e
M-1
- ()0 s Cig) plw) .
u=l
where 5(u) = (ﬁus’ ﬁl+us""’ B(u+l)s-l)' .

12

(B(O) E a(l) o . ﬁ<2 -El))

vounl ot e
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3. Generalized least sauares estimators for fractional reBlications.
- ] g - - = = ]

3.a. The set of all least squares estimators.

Given a block of treatment combinations X (v=0,...,M~1) and the
associated vector of observations Y(Xv), the "normal equations" cor-

responding to the linear model (2.19) are given by:

(3.1) (C)r {c B =(C )" ¥(X ), v=0,...,M-1,

where (Cv) is the S x N matrix of the coefficients of (2.19), i.e.,
_ (M) (s)

(3.2) (cv) (1, €07 yeeey M 1))63 )

A generalized least squares estimator (g.l.s.e.) of P 1is any
(s)

linear operator (Lv)’ on E (Eucliden S-space), 80 that (Lv)

is an N x S matrix satisfying the equation:

(3.3) (€)' (€ )(L) = (C)*, v=0,...,M1 .

r _ { [ [ M t
Let (L)' = ((L )" ¢ (Tyy)t teed (Do qy))") vhere (L )
{u=0,...,M-1) are square matrices of order S x S. Substituting
from (3.2) for (Cv) in 3.3 and decomposing (Lv) as indicated

we arrive at the matrix equation:

i ] [~ 1
(L) 1
vO C(M)
eerereas 1
G st@™ea®) | . ®c®)ye
T "
_(LV(M-l)) Sy (M-1)
were (@M = (1,c T),..., c M) wny)) (LCy M e & ) ise

13



square symmetric matrix of order M x M, whose (i,J)-th element is

qi?) = C\(rli'd) C‘(,?) (i)J=O)'o-,M-l.)o Since C\(:J,d) = : 1 and (C(s))

is non-singular, the linear equations in the matrices (Lvu) can be

expressed in a form equivalent to (3.4) as,

M-1
(3.5) I o (1)) -1

Since the unique solution to the equation (H)(C(S)) = I(s) is
(K) = % (C(S))' , 1t follows that the M matrices (Lij)), 3=0, 444,

M-1, whose submatrices are given by:

(3) 1c™ By aruega
(3.6) (Lv’) =

0 , otherwise
constitute a basis of M independent solutions of (3.3). Thus,
every g.l.s.e. (Lv) can be represented as a linear combination of
the M linearly independent operators (Lij)) (3=0y +v.,M=-1), 50
that the coefficients of (Lij)) add up to 1. Formally, the set of

all g.l.s.e., given Xv is:

; 5 ($)
(3.7) Lic) =) : (L) = Jéo ML)

M-1
2 A =1)
j=0

Every g.l.s.e., can thus be represented by M coordinates
M-1
A
such that ¥ %, = 1. Furthermore, if B _ de-

(Xo))" J=o .j

l,...,xM_l)
notes the vector of g.l.s.e. of P then we have, according

to (3.6) and (3.7)

1k

. ‘

o GEED GEEE e
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)"O
v oM
A 1 1 vu (s)
(3.8) B, =3 . @ (c*P/) Y(Xv) for every v=0,...,M-1.
(M-1)
XM—l Cvu

3.b. Some statistical properties of g.l.s.e.

In the present section we prove that there are nc unbiased g.l.s.e.
of B, and derive an expression for the trace of the mean-square-error
matrix of a g.l.s.e. 3.

Consider a fractional replication design in which a block Xv
(v=0,...,M=1) is chosen with probability L, (gv >0 for all

M-1
v=0,...,M-1; ‘z £ =1). A randomized fractional replication pro-

v

v=0
cedure is thus represented by an M-dimensional probability vector ¢&.
This class of randomizatlion procedures contains, in particular, the

fixed fractional replication design, in which one of the Xv blocks

is chosen with probability one.

Theorem 1.

=) 1 (M) (8)y, 2(u)y _ alu)
Let B =35 Cpy (€77 Y(Xv) then Eg* ") =8 for
1 1 1
all u=0,...,M-1 if, and only if, ¢Et* = (ﬁ’ Treeer ﬁ|'
Proof.
The expected value of E(u) under randomization procedure § ,
is given by:

15



~(w), 1 M (M) ,.(8),,
(3.9) B, (B) =3 vzo t, oy’ (€°7)' X(X)
1 M3 M) (o(8)y, | MEP L) (L (3)y(w)
=3 vgo £, Coy (€57 wgo Coy (784 E(e)
M-1 M-1 M-1 M-1
(M) L(M)y.(w) (u)
= ( c c B =B E .
wgo vzo b O O ' (w£)=0 v§0 v

ol (Mg(w)

vu v

Clearly, if & ='171/I for all v=0,...,M-1, then

v
M-1 M-1
(M) (M) _1 (M) (M)
vz=:0 & Cvu ‘W T H o Cou Gy =0

for all u 7‘ w by the orthogonality of the column vectors of (C(M)).

Thus, Ey, By 2 g o an1 u=0,...,M=1. On the other hand,

if Eg [g(u)) = S(u) for all u=0,...,M-1 then, in particular

50)) L@ 5§ 00 g

(3.10) E (B .. C B
: wl v=o ¥ W
e ¢
But the condition Z gv Lw =0 for all w=l,...,M-1 is equivalent
v=0
to the condition:
1
0
M
(3.11) (c( ))' . = O
0

(

Multiplying both sides of (3.11) by (C M)) we get:

16
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(3.12) o= (cMycMyey o™

O+ 0OF

where 1(M) is an M-dimensional vector with unity in all its components.

It follows that a necessary condition for the unbiasedness of ﬁ(u) is
that ¢ = % l(M), i.e., each block is chosen with the same probability.

(Q.E.D.)

Returning to the g.l.s.e. we have:

(3.13) &, 0)

g(0) ., a(1) . . B(M-1)",
By Wl (AP S MBTT Ly B ')

- (XOB(O)' : XlB(l)' . XM-IB(M-I)').

(M) _

where g% == 1 (1,1,...,1)' .

1
M

=l

M-1
Since ) A =1 ve conclude that there is no unbiased g.l.s.e. of B.
u=0

The g.l.s.e. in which Xo =1 and Xu =0 for all u> 0 yields
(0)

unbiagsed estimates of the components of B only. Similarly when
xJ =1 (J=0,...,M-1) and XJ' =0 for all J' # J, the corresponding
g.l.s.e. yields unbiased estimates of the components of 5(J) only.

The mean-square-error dispersion matrix of a g.l.s.e. 6 , under
randomization procedure &, is defined by Ei{(a-ﬁ)(é-ﬂ)'] . Let
M(g,A;B) denote the trace of the mean-square-error dispersion matrix

L)

of a g.l.s.e. represented by a vector A, such that \!' = 1, under

randomization procedure % ; i.e., M(8,\PB) = Eg[(é-ﬁ)' (6-5)] .

17



Theorem 2.
The trace of the mean-square-error dispersion matrix under ran-

domization procedure ¢ is given by the expression:

M-1
(3.8 MENB) = P+ (81D T 2. T (a2

u=0 u=0
M-1 M-1 M-1 o) (M) (u,)" (u2)
+ 3 (2>.u+1) zu ) t, Cou Cou B )
u1=O (u2 l)=O v=0 1 2

(u)

here |2 = g, 18912 2 g s (oL me1)

Proof.

(3.15)  M(£,M,B) = E ((B-B)' (B-B)) = E, (B'B) -2 B E, (B) + p'B

4

According to (3.8)

M-l
uzo M Eg [Y(xv)'y(xv)]

wir

(3.16) E, (B'f) =

Substituting (2.19) for Y(Xv) in (3.16) we get:

M-1 (u,)
(3.17) _é_ EgtY(xv). Y(xv)} =.]S.‘E§[[Z C\(nlfi (C(S))ﬁ SRS
u, =
M1 gy (s), (%)
(2 c, (©7)B “+el)=
u,= 2
2 M-1 M-1 (M) (M) (ul)' (s) (8) (uQ)
= += E ¢t g (c*=)(c™) B )
° 5t u§=0 ;§=O A B!
SR T YR T 3 (T e ) A
u=0 uy # u, v=0 o, Y

et gewd g
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L e

Furthermore, Ei[a'] = (xo E, (S(O)'] el Ny EQ(E(M'I)'])

Substituting (3.9) for EQ[E(“)], we arrive at

M-1 M-1 M-1
CE (8 = (u)2 ( (M) (M)
(3.18) B' E (B) = A (B + A £, C c .
¢ ;Eo ul | ;§=O u [;E%ul vZO v, v,
(u,)
(u,) 2
Pt ]

Thus, from (3.15)-(3.18) the result holds.

QoE.D.

Corollary: When each block Xv (v=0,...,M=-1) 1is chosen with equal

probabilities (E=£*) we have

M-1 M-1
(3.19) Mex 8 = (o8 + 817) F 2. Y () e™)?
u=0 u=0

3.c. Optimum strategies

A strategy of the Statistician is a pair of two M-dimensional

vectors (E,A) such that & 1is & probability vector, and X! l(M) =1

Every strategy (&,\) represents a randomization procedure and a
g.l.s.e. The decision problem is to choose (f&,\) optimally, with
respect to the loss function M(&,\;B).

Comparing (2.14) to (3.19) it is easily verified that for every
(¢,A) there exists g° 1n B suh that M(E, 5 8°) > M(E*,%;E°) .

Thus, whenever £ 1s arbitrary, &* represents an admissible randomi-

zation procedure. For this reason we shall restrict the discussion

from now on to strategles with randomization procedure &%*, and turn

now to the problem of deciding upon an optimum g.l.s.e. under ¢E*,



We notice in (3.19) that M(t*,);8) depends on B only through

the M values IB(u)Ia. An a-priori information concerning these

values might thus be utilized for the choice of A. Thus, let TT(u)

(u)|2

be an a-priori distribution of |[B , defined over the half-line

[O)‘”) .

Theorem 3.
The Bayes g.l.s.e. of £, with respect to the a-priori distribu-
tions {TT(O),...,TT(M'I)) , under randomization procedure E* is

determined by the vector A = (xio),...,xiM'l)) , where

B B3
(3.20) xfru) = Ml“ ) , for all u=0,...,M-1 .
- (u)2
ugo E“(u)[la <)

Proof:

The risk function under (&*,\) and || 1is

(3.21)  R(E*MTT) = (6° Mil E {Ia(“)lel)ijl A2 Mil (ax -1)
. *,A; = (o + - =i,
u=0 &u) u=0 % =0 u
(u) 2
E“(u)[|ﬂ 1E

It is easily verified that Xiu) (u=0,...,M-l), given by (5.20),

M-1
minimize (3.21) under the comstraint 3 X = 1.
u=0
Q.E.D.

(w)

M-1
Let th“) -k (1813 (u=0,...,M-1) and R_ = u§0 Ry

ﬂ u)

the Bayes risk with respect to an a-priori distribution TT is

20
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(3.22) A 3T = (8 + R) z ()2

M-l : 2 M-1
( ( 1 (u)y2
B u§0 (ZX“u)-l) Rﬂu> = Rn - -R-ﬂ - -g—n) uz=O (Rnu )

In particular, when all IB(u)|2 (u=0,...,M-1) have the same a-priori

distribution, with R (w) R; for all wu=0,...,M-1, then the Bayes

1

g.l.5.e. 1s represented by \* = (% s Foreees %) with a Bayes risk

2
(3.23) R(*, M, TT) = - + (M-1)R*

Theorem 4.

A* = % 1(M) represents the minimax and admissible g.l.s.e.
under randomization procedure &* relative to the class of all
M-
a-priori distributions TT , such that Rn = 2: Riu) = const. and

2

(6" < R < ®). The minimax risk is given by (3.23).

Proof:
The minimax risk is the maximal Bayes risk, with respect to all

the a-priori distributions TT in the class considered. The Bayes
M-1

risk for any of these n's 1s given by (3.22) where R = D Rﬁu)
u=0
is a given constant. Set the lLagrangian
2 M-1
(0) (M-1) 1 g (u)y2
(3.24)  L(R",..,R750) =R -2 (lag) T (RTDT+
¢ n u=0
M"l (u)
+p(Rﬂ z Rﬂ )
u:

21



]

(u)

ﬂ (u=0, ...,M-1) and

By differentiating partially with respect to R
p and equating the derivatives to zero we arrive at the system of

linear equations:

b1
n

(3.25)

M-1
Y Rf(“) =R

u=0 T

(u)_R

The solution of this system of linear equations is given by Rx = ﬁf

for every u=0,...,M-1. Furthermore, since Rﬂ > 02 , all the second

(u)

order partial derivatives with respect to R, are negative, Thus all

(w)_ Bx
n M

u=0,...,M-1 are minimax strategies for Nature. As mentioned before,
1 ._(M)
* = =
A m 1

a-priori distributions =x such that R for every

is then the unique minimax strategy for the Statistician.
The Bayes risk corresponding to A* is given by (3.23). The admissi-
bility of A%, relative to the class of a-priori distributions con-
sidered, follows from the fact that it is the unique minimax.

Q.E.D.

22
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L, ggg generalized inverse :gg ;2; g.l.s.e.

b.a. The g.l.s.e. of minimum norm

A. Ben-Israel and S. J. Wersan (1962) proved that the g.l.s.e.

(L) with minimum norm, i.e., min tr (L_)'(I.) , 1s a particular
v v v
(Ly)

generalized inverse (Cv)T of the matrix of coefficients in (2.19),

vl ?°** Y v(M-1

verse (Cv) always exists, it is unique, and given in general by

namely (Cv) = (1, C(M) C<M) )) X (C(S)). The generalized in-

the formula:
(4.1) )T = 1™ - )y b)) I(E ) (c,)

for all v=0,...,M~1; where (Ev) is a product of elementary trans-

formations, which transforms (Cv)'(CV) into:

I<S) . IA))
(&.2) (E)(X,)' (X)) = .....;...Y. (v=0,...,M-1)
(0) + (o)
and where
(a,)
(b.3) (Dv) = .. ... (v=0,...,M-1) .
_7(N-8)

The generalized inverse matrix, (Cv)+ has the properties:

(L.h) (cv)(cv)T(cv) = (c,) for all v=0,...,M-1 .
and

CRUCHICRUNITET

A straightforward computation of (CV)T according to formula (L4.1)

yields the result

23
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2
2(1
t_o1|”
(h.5) ) =51
p(M-1)
That is, (Cv)T is a g.l.s.e. represented by A\* = % l(M), and has

the optimal properties mentioned in the previous section. This re-

sult can be obtained in the present framework more easily. According ‘
to (3.8) a g.1.s.e. is given by l
o o
. S
(4.6) (L,) = % . ®(c( ))' (v=0,...,M-1) l
by (M)
M-1 Cv(M-l) l
Accordingly, the norm of (Lv) is
M-1 l
2 S
(45.7) tr. (1)) = tr. s 3 2 By
S u=0 ‘
M-1 M-1
O A
u=0 Y u=0 Y
1 (M) Ml >
Since the vector A¥* = M 1 minimizes 2 Xu ; under the constraint
u=0

M-1
2: ku = 1 , it follows that the g.l.s.e. represented by \* minimizes
u=0

the norm of (Lv)’ (v=0,...,M-1).

b.b. The g.1.s.e. suggested by C. R. Rao.

C. R. Rao (1962) defines the g.l.s.e. of P by the operator
- [ - ' ' ( < -
(Lv) [(Cv) (Cv)] (Cv) where [(Cv) ‘Cv)] is a generalized in

verse of (Cv)'(Cv). In case (Cv)' (Cv) is invertible, (Lv) is the

24
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unique g.l.8.e. of B, We shall prove now that under the present model
of fractional replication designs, Rao's g.l.s.e., (Lv)' , is represented
by the vector A\~ = (1,0,0,...,0). For this purpose, define the matrix

of elementary transformations

[ 1 i
-Ci?) O (s)
1 .
(4.8) (Ev)=V:§ S0 ®1
o0
V(M-1) i

then we have, for every v=0,...,M-1,

(k.9) (E )[(c ) (c )IE ) e 2

.9 E c (¢ E ) = - . -
v v v v (O) 1:- (0)

Hence,

(4.10) e (e 1™ = (E)'(E)

To show this, consider the relationship
(k.11) [(c) (eIl (e )17 Ie ) (e ) = [(c ) (c,)]

Multiply both sides of (4.11) from the left by (EV) and from the

right by (Ev)'. ‘Then,
(112)  (B)((c))" () B (B)(c,) () B = (E)(e,) (c)1(E,)"
Or according to (4.9)

25



Accordingly,

(h1b) (L) = (B)'(E)(C,)"

[ (M) w ][ ]
M “Cyp e ~Cy (1) 1(M)
='§' .VI 1 . O ® (c S))'
() ' )
M ‘. v(M-
'Cv(M-l) O 1 J1 L .
1 3(0)
=% °1® 8y o <:>
0 0

That is, Bao's g.l.s.e. (Lv)' 18 represented by \ = (1,0,...,0)'.

From theorem 1 it follows that (Lv)- is an unbiased estimator
of (B(O),O). The trace of the dispersion matrix of (Lv)' Y(Xv) s

under randomization procedure Et* is given according to (3.19) by

(4.15) M(e*,08) = 0@ + 2]g|2 - 2[p®)|2

M-1
02 +2 zl ]B(u)|2

Thus, in case all Iﬁ(u)[2 have the same a-priori distribution, the

risk under strategies (8*,\°) and n will be

26

i pung

pr———

sont SIS  BEed



| o]

i

(4.16) R(E%,\", %) = o° + 2(M-1) R*

Comparing {4.16) to (3.23) we conclude that Rao's g.l.s.e. (Lv)'
might be very far from the optimum g.l.s.e. in case all the subvectors

of B have approximately the same average effect. On the other hand,

in case the effects of 5(1) (M-1)

(0)

to B are negligible relative to

the effect of B the Bayes g.l.s8.e. will be very close to Rao's

g.l.8.e.
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